Water-resource use and conflict in a two-sector evolutionary model

A. Antoci (University of Sassari)S. Borghesi (University of Siena)*M. Sodini (University of Pisa)

Italian Association of Environmental and Resource Economists 4th Annual Conference, 11-12 February 2016, Bologna

Overview

- Over the last few years the growing problems of water scarcity and water pollution have attracted increasing attention
- * Water conflicts/competition both across countries (e.g. Ciad-Nigeria-Camerun, Israel vs. Jordan, Siria vs. Turkey etc...) and within countries (among competing populations/firms/sectors)
- * To deal with these problems the introduction of a system of market incentives (and disincentives) in water management has been proposed

Water tradable permits: applications

- * Water tradable pollution rights (WTPR): mainly US (Colorado, California, Wisconsin etc...) and Australia (Murray-Darling basin)
- * Water tradable abstraction rights (WTAR): US, Australia but also Chile, Mexico and other LDCs
- * Mixed results: some experiences very successful (e.g. Murray-Darling basin, Idaho, California), others unsuccessful (small number transactions in Wisconsin, Colorado...)

Related Literature

- Huge literature on ETS (mainly on GHG emission trading)
- Vast literature on water applications (mainly case studies):
 Borghesi (2013, JEPM), Fisher-Vanden and Olmstead (2013, JEP) for surveys on WTPR and WTAR
- Recent empirical studies on invention and diffusion of water supply and water efficiency technologies (Conway et al., 2015)
- Small subset of theoretical models on water trading (mainly simulations)
- This paper: Study consequences of a market for water-use permits in the presence of a population of interacting economic agents characterized by imitative behaviours

Aim of the paper

- investigate the theoretical framework underlying the application of water tradable permits by proposing a dynamic evolutionary model to capture: (i) water competition among sectors and (ii) bounded rationality among economic agents
- * Two-sector model with replicator dynamics
 - Antoci, Borghesi, Sodini, 2014. "ETS and technological innovation: a random matching model", Handbook Climate Change, Oxford University Press
 - Antoci, Borghesi, Russu, Ticci, 2015: 2-sector model on FDI (Ecol Econ)

A TWO-SECTOR MODEL

- * 2 sectors: A and B
- Population of agents
- * The size of the population is constant and represented by the positive parameter N
- * the variable x(t) indicates the share of the population working in sector A at time t (so $1 \ge x(t) \ge 0$, and 1 x(t) indicates the share of the population working in sector B)
- * The production activities in both sectors depend on the stock Wi (i=A,B) of available water resources (Wi can also be interpreted as an index that takes water "quality" into account)

SET UP OF THE MODEL

- $W_A(x) = \overline{W}_A \alpha x \overline{N} \beta (1 x) \overline{N}$ where: $\alpha > \beta > 0$
- * $W_B(x) = \overline{W}_B \gamma x \overline{N} \delta (1 x) \overline{N}$ where: $\gamma > \delta > 0$
- * $\pi_i[W_i(x)]$: payoff of an agent working in i=A,B
- * $\pi'_{i}[.]$ > 0: payoffs strictly increasing functions of available water resources
- * 2 possible cases: $\pi_A[W_A(x)]$ decreases more or less rapidly than $\pi_B[W_B(x)]$ as x increases.
- * Pricing mechanism: water either free (p=0) or priced as follows:
- * $p = \bar{p} + \mu x \bar{N}$ where: $\bar{p} \ge 0$, $\mu \ge 0$

Replicator dynamics

(Weibull, 1995)

- * $\dot{x} = x(1-x)\{\pi_A[W_A(x)] \pi_B[W_B(x)]\}$
- * Agents move towards the most profitable sector (i.e. that has the highest payoff)
- * Possible steady states:
 - * Extreme equilibria: x=0, x=1
 - * Inner equilibrium: 0<x<1 s.t. $\pi_A[W_A(x)] = \pi_B[W_B(x)]$

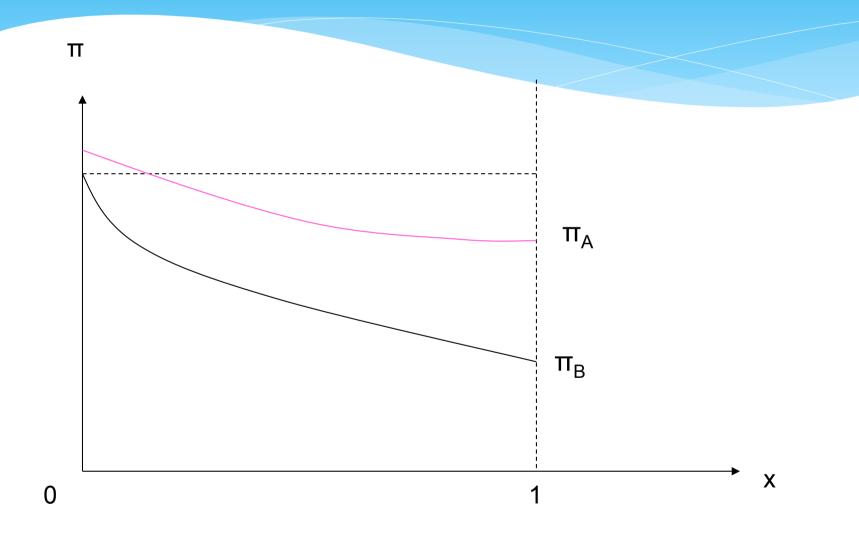
Scenario 1: payoff in A decreases less rapidly than in B



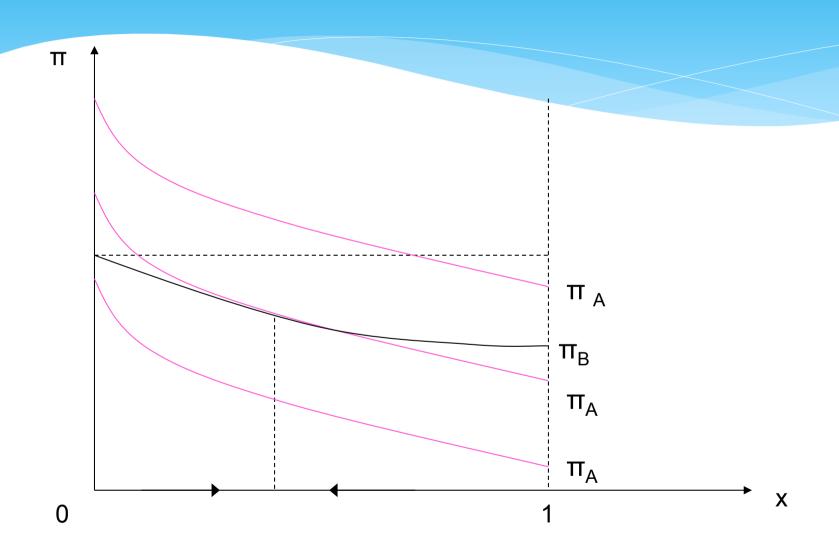
Scenario 1: payoff in A decreases less rapidly than in B

- * 3 possible sub-cases:
 - * 1.1) $\pi_A(x)$ always above $\pi_B(x) \rightarrow x=1$ (full specialization in A)
 - * 1.2) $\pi_A(x)$ always below $\pi_B(x) \rightarrow x=0$ (full specialization in B)
 - * 1.3) Curves $\pi_A(x)$ and $\pi_B(x)$ cross in the (x,π) plane at some $x^* \in (0,1)$
 - → "bistable dynamics": if the initial share x of agents working in A is below the threshold level, then all agents will work in B at the end of the day; vice-versa, if is larger than the threshold level (path-dependency)
 - If $\pi_B(o) > \pi_A(1)$, the individually rational choice of moving to A produces a socially undesirable equilibrium at the aggregate level for the community as a whole \rightarrow Pareto-dominated stable Nash equilibrium

Scenario 1: payoff in A decreases less rapidly than in B



Scenario 2: payoff in A decreases more rapidly than in B



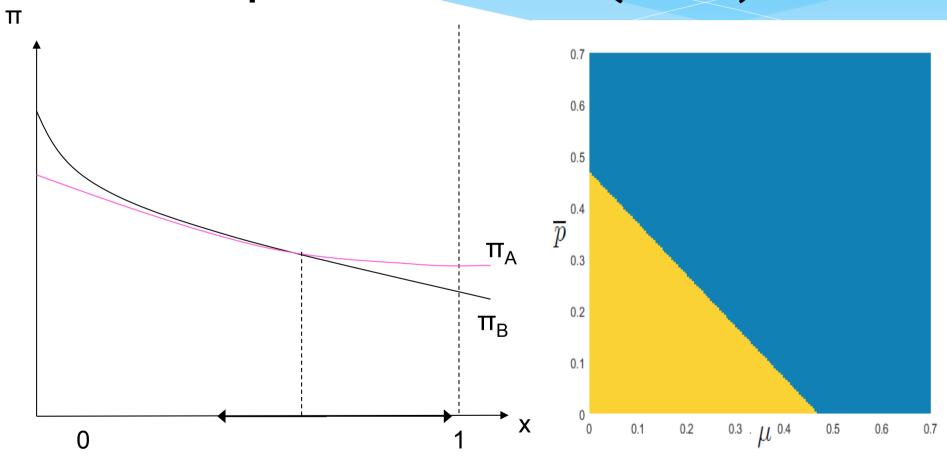
Scenario 2: payoff in A decreases more rapidly than in B

- * 3 possible sub-cases:
 - * 2.1) $\pi_A(x)$ steeper than $\pi_B(x)$ but it always remains above it $\rightarrow x=1$
 - * 2.2) $\pi_A(x)$ steeper than $\pi_B(x)$ and lies always below it \rightarrow **x=0**
 - * 2.3) $\pi_A(x)$ steeper than $\pi_B(x)$ and curves cross in the (x, π) plane \rightarrow converge towards the stable Nash equilibrium $x^* \in (0,1)$
 - $\pi_B(0) > \pi_i(x^*)$: although everyone would be better-off working in the lower-impact sector B, the dynamics that emerge from the strategy adoption process leads away from x=0 towards the stable equilibrium x^* , so that when $x< x^*$ the community moves along a Pareto-dominated path.

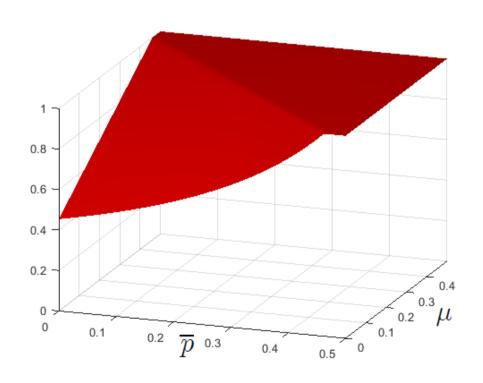
Pricing water

- * $p = \bar{p} + \mu x \bar{N}$ where $\bar{p} \ge 0, \bar{N} \ge 0$
- * μ = elasticity of water price to demand (e.g. WTP)
- * \bar{p} = lower bound (e.g. price floor in an ETS)
- * By properly modifying \bar{p} and μ the Public Authority can affect the relative position of the curves and the dynamics of the system (and thus avoid Pareto-dominated outcomes)
- * Fix \bar{p} and μ so as to ensure that the curve π_A lies always below π_B :
- * $\pi_A(W_A(x)) \bar{p} + \mu x \overline{N} < \pi_B(W_A(x))$
- * Results can hold as long as $p_A > p_B$

Simulation results-1: from bistability (yellow) to unique equilibrium x=0 (blue)



Simulation results-2: the separating threshold



Concluding remarks

- Water crucial for production processes but limited → water conflicts/competition among individuals, sectors, countries...
- * The present paper examines a 2-sector model of water competition with imitative behaviours across agents
- * If water is unpriced, the society as a whole may end up in a "poverty trap": individually rational choices lead to full/partial specialization in the most water-consuming (polluting) sector, but agents would be better-off by working in the alternative ("cleaner") sector.
- * Water pricing mechanism to "escape" the poverty trap
- * A properly designed WTAR (WTPR) [e.g. a sufficiently high price floor] can drive the economy away from the Pareto-dominated equilibrium

Agenda for the future

- Introduce Leontieff production functions: e.g. YA=min[aWA,bxN]
- 2. Intertemporal evolution of water resources (e.g. role of infrastructures such as dams, canalizations etc...) \rightarrow from unidimensional to bidimensional dynamics (Phase plan in x and W)
- 3. Extend water competition from within countries to across countries

Thank you for your attention!!

simone.borghesi@unisi.it